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LETTER TO THE EDITOR 

Monte Carlo experiments on percolation: The influence of 
boundary conditions 

D C Rapaport 
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel 

Received 24 October 1984 

Abstract. The slow convergence of the cluster size distribution observed in recent Monte 
Carlo simulations of two-dimensional site percolation is shown to be due to the use of 
free boundary conditions. When periodic boundaries are employed the convergence is 
improved considerably to the extent that the integrated size distribution for large (typically 
10'' site) lattices is essentially flat over a range of cluster sizes spanning three orders of 
magnitude. The existence of this plateau, originally predicted by scaling theory, leads to 
an improved estimate of the critical probability for the square lattice. The observed 
correction to scaling is not readily characterised by a single additive term, a fact which 
helps one to understand the wide range of published exponent estimates. 

As part of the continuing effort to understand the problem of two-dimensional percola- 
tion at and near the critical probability, a series of Monte Carlo studies involving 
lattices of ever-increasing size have been carried out in recent years (e.g. Hoshen and 
Kopelman 1976, Hoshen et al 1979, Margolina et al 1984). However, despite the fact 
that the latest work involves extremely large lattices-the biggest containing over 10'' 
sites-the results for one of the key quantities, the cluster size distribution, remain 
subject to pronounced finite-size effects. The consequence of this lack of convergence 
is that the evidence on which percolation scaling theory is based (Stauffer 1979) remains 
somewhat less than convincing. 

A common feature of these Monte Carlo calculations is that they employ free 
boundary conditions. The failure to use periodic boundaries distorts the distribution 
of cluster sizes in an uncontrolled manner by fragmenting clusters that touch the 
perimeter sites, with appropriate consequences for scaling analysis. When, as will 
become apparent below, the calculations are carried out subject to periodic boundary 
conditions, a much sharper picture of the scaling behaviour emerges. This is not 
unexpected since, in the periodic case, the size distribution for clusters not large enough 
to span the lattice is that of the infinite system, a result which does not hold if the 
clusters must be truncated at the free boundaries. 

The technical aspects of simulating percolation by means of a Monte Carlo approach 
are comparatively well known and will only be briefly mentioned here. The so-called 
'cluster multiple labelling' method (Hoshen and Kopelman 1976) is used, together 
with the modification that only a single row of lattice sites is represented in the computer 
at each step of the calculation (Margolina et a1 1984). A novel feature of the present 
approach is that the lattice is not generated in toto, but constructed by combining 
separately generated slabs. Each slab is a square of IO4  x lo4 sites: by combining sets 
of slabs a series of lattices of various sizes can be constructed with either periodic or 
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free boundary conditions. The information which must be retained for each slab, to 
facilitate later combination, is the size histogram for complete clusters that do not 
extend to the slab perimeter and a list of the (tentatively) incomplete clusters to which 
the occupied perimeter sites belong. 

The lattices constructed cover a range of sizes, the biggest having edges of length 
L = 1.6 x 105-a lattice of 2.56 x 10" sites, the largest generated to date. A particular 
economy of the slab approach is that while constructing a lattice of edge length L the 
method also produces 4 lattices with edge iL ,  16 with edge aL, and so on. The random 
number generator used to determine site occupancy is of the shift-register type (Kirk- 
patrick and Stoll 1981). Construction of a single slab requires approximately 5.5 
minutes on an IBM 3081 computer; the time required for combining the slabs is 
negligible by comparison with the overall generation time. The problem of the limited 
(32 bit) integer word size of IBM computers raised by Margolina et a1 (1984) does 
not occur here; the reason for this is that cluster sizes within a single slab cannot 
exceed the maximum integer value, whereas the relatively short computations involved 
in slab combination employ double-precision floating-point (with a 56 bit mantissa) 
arithmetic. 

The focus of the present letter is on the nature of the cluster size distribution at 
(or, strictly speaking, very close to) the critical concentration p c  of the square lattice. 
The current best Monte Carlo estimate for p c  on this lattice is 0.5927 * 0.0003 (Hoshen 
et al 1978) based on a lattice with L = 4000. A similar value was obtained recently by 
Gebele (1984). The simulations described here support this value of p c  but with smaller 
uncertainty limits. 

According to the scaling hypothesis (Stauffer 1979) the cluster size distribution can 
be represented as 

where n,( p )  is the mean number of clusters per site of size s and p is the site occupation 
probability. The accepted values for the two exponents appearing in ( 1 )  follow 
immediately from the conjectured thermal and magnetic Potts model exponents (den 
Nijs 1979, Pearson 1980) and are (+ = g, T = g. Deviations from the scaling form ( 1 )  
at small values of s are accommodated by an additive correction term (Hoshen et al 
1979), namely 

n , ( p )  = ~- ' ( fo(z)+~-nf l (z ) ) .  (2) 

The measured cluster distributions are analysed by the approach adopted in earlier 
work (Hoshen et al 1979, Margolina et a1 1984): the distribution is expressed as a 
histogram in which the kth bin contains the number of clusters in the range 2k-' s s < 2k 
(ks l ) ,  and the quantities N, based on partial sums of the bin contents 

are plotted against the geometric means of the bin limits s = [2k-1(2k - 1)]1'2. If scaling 
is correct then the integration of (2) corresponding to the partial sum (3) at pE ( z  = 0) 
yields 
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where qi = f ; ( O ) ;  the implication of (4) is that N, should tend to independence of s 
for s sufficiently large. 

The measured s-dependence of N, at p c  for both free and periodic boundary 
conditions is shown in figures 1 and 2. The results are based on a single lattice 
realisation for L = 1.6 x lo5, four lattices with L = 8 x lo4, etc. Figure 1 is typical of 
previously published results, especially those of Margolina et a1 (1984) for the triangular 
lattice: it shows that notwithstanding the extreme lattice sizes there is a lack of 
convergence for clusters containing more than about 1000 sites (i.e. log, s >  10) and, 
furthermore, there is only the slightest hint of the s-independent plateau predicted by 
scaling theory, even for the largest of the lattices. 

I 

i o g z b )  log 2 (SI 

Figure 1. Dependence of the partial sums N, on 
cluster size s for a series of square lattices (edge 
length L: a, 20 000; b, 40 000; c, 80 000; d, 160 000, 
subject to free boundary conditions ( p  = 0.5927). 

Figure 2. Dependence of N, on s-as in figure 1-but 
for periodic boundaries. 

These results should be contrasted with figure 2 from which a very different picture 
emerges. The use of periodic boundaries produces a broad, relatively smooth plateau 
spanning almost three orders of magnitude in cluster size (a result contrary to the 
expectations of Margolina er al 1984); the finite size effects are only noticeable for 
very large (typically s > 218) clusters. The fact that the plateau is obtained for the 
conjectured exact value of 7 provides additional support for its correctness. 

The numbers of small clusters appearing in the Monte Carlo generated lattices 
(with periodic boundaries) can be compared with the exact values (Sykes and Glen 
1976). If the measured fraction of occupied sites ( = 0.592 702) is taken as the effective 
value of p for comparison purposes, the number of isolated sites differs from the exact 
value by only 0.005%, and the number of 2 and 3 site clusters by 0.008%. The difference 
between cluster numbers arising from the choice of boundary conditions affects even 
the smallest clusters-there is a 0.004% increase in isolated sites if free boundaries 
are used, and a 0.008% increase in 2 and 3 site clusters. The effect of the boundaries 
on large clusters is apparent from figures 1 and 2. The large-s deviation from the 
plateau reflects the dearth of sufficient big (> 219) clusters in a lattice which, though 
extremely large, is still of limited extent. 
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An analysis similar to that leading to figure 2 can be used to improve the precision 
of the square lattice pc  estimate. Figure 3 shows the partial sums N, both at p c  and 
at two nearby values pcf Ap, where Ap/pc=2 x for a lattice with L =  8 x lo4. The 
observed transition of N, from a monotonically increasing function of s to one with 
a maximum reflects the merging of numerous large but finite clusters into a single 
'infinite' cluster that occurs at pc. The broad plateau is present only at the intermediate 
value of p ;  thus if the scaling hypothesis is correct and T is as conjectured, figure 3 
suggests the estimate 

pc  = 0.5927 * 0.0001. 
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Figure 3. The s-dependence of the partial sums in the 
neighbourhood of pc  ( = 0.5927) for L = 80 000 and 
periodic boundaries. The plateau only appears at pc .  
a,p=0.5926;  b, p=O.5927; c,p=0.5928. 

Figure4. Log-log plot ofthe small-s deviations ( A N , )  
from the plateau for three possibleplateauvalues N(O) 
(a, 0.0473; b, 0.0474; c, 0.0475). 

The sensitivity to p apparent in figure 3 indicates that a further reduction in the error 
limits, with a possible minor adjustment to the value itself, would result from additional 
simulations close to the present value of pc. 

Several other recent estimates of pc  are available with which the above result can 
be compared. Series analysis leads to the values 0.593*0.002 (Sykes et a1 1976) and, 
more recently, 0.5923 rtO.0007 (Djordjevic et a1 1982). Different kinds of spatial 
renormalisation techniques yield 0.5927 f 0.0002 (Derrida and de Seze 1982) and 
0.5931 *0.0006 (Reynolds et a1 1980). 

The correction-to-scaling exponent Iz defined in (2) provides a measure of the 
small-s deviation of N, from the plateau. If the plateau value is denoted by N(O) and 
the deviation by AN,, where 

N'O'= qo/ (  1 - T), AN, = N(O) - N,, 

then (4) is equivalent to 

ln(AN,) =constant -0 In s. 

If (5) holds, then Iz is the gradient of the log-log plot of ANs against s. The 
deviations are plotted in figure 4; due to the slight uncertainty in the precise value of 
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N(O), plots for three closely spaced vaues are shown. The best choice of N(O) is the 
one for which the plot is closest to linear, namely N(O) = 0.0474; as N(O) moves away 
from this value the curvature (which may be positive or negative) of the plots gradually 
increases. The actual range of s covered is 23 to 2" and the results are independent 
of lattice size; at larger s the AN, become dominated by statistical fluctuations in the 
cluster data. It is clearly impossible to arrive at a particularly precise estimate of ll 
from the graph; a visual fit to the points for N(O) = 0.0474 yields ll = 0.64, although 
individual near-linear segments correspond to ll between 0.58 and 0.66-it is far from 
obvious that a linear fit is justified. 

Other estimates of the exponent ll exist that are obtained from Monte Carlo, series 
and renormalisation group calculations, but there is little overall agreement between 
the values which are spread over the range 0.46 to 0.75. The recent Monte Carlo study 
on the triangular lattice (Margolina et al 1984) concluded that ~ = 0 . 6 * 0 . 0 8  on the 
basis of a series of linear fits; however, it is only when one examines a plot of the 
actual data (as in figure 4) that the reason for the low quality of the fit becomes apparent. 

The relative merits of the different values for the exponent ll have been discussed 
at some length by Adler et a1 (1983) and Margolina et a1 (1984), and the proposal 
made that the correction to scaling actually consists of two or more terms with similar 
exponents. While the presence of competing confluent singularities would certainly 
be a sufficient reason for the discrepancies between the various results, it also implies 
that accurate numerical analysis is very difficult, if not impossible, on the basis of data 
currently available. The inability to arrive at a reasonably confident estimate of the 
correction exponent, depite the very large lattice sizes used in the present work, is 
further evidence that a single additive term does not adequately describe the corrections 
to scaling. 
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